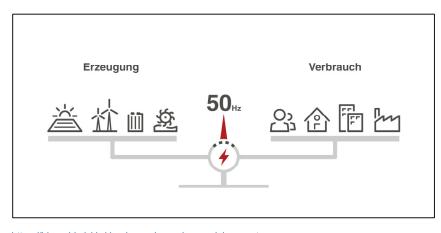


EIWG und PV-Großanlagen

Britta Ehrenberg

24.09.2025

Energiewende – ein paar Hintergrundinfos



Übersicht Klimaziele

- Nationale Ziele EAG 2021:
- Stromverbrauch bilanziell zu 100 % aus Erneuerbaren (+ 27 TWh Produktion) bis 2030
- Dekarbonisierung Österreichs (Klimaneutralität) in allen Sektoren bis 2040
- NÖ Klima- und Energiefahrplan Ziele bis 2030 (Update 2025):
- Reduktion der Treibhausgas-Emissionen um 48 % (bezogen auf 2005)
- Erzeugung von 4.500 GWh PV + 8.000 GWh Windkraft

Netzinfrastruktur Allgemeines

https://blog.ebl.ch/de/durch-regelenergie-zur-sicheren-stromversorgung

- Grundbedingung für Netzstabilität:
 Erzeugung = Verbrauch (zu jedem Zeitpunkt)
- Vermeidung von Lastspitzen im Netz (PV Spitzen Sommer / mittags)
- Volatilität nimmt zu (im Tagesverlauf, saisonal)
- Ausgleich der Volatilität durch Speicher, Lastverschiebungen

EIWG – Rechtliche Neuerungen

Wozu brauchen wir das neue Elektrizitätswirtschaftsgesetz ("ElWG")?

- Aktuell: ElWOG 2010 als zentrale gesetzliche Grundlage für Strommarkt, rund 15 Jahre alt
- NEU: EIWG (Entwurf 03.07.25) als "neues Betriebssystem" für modernen Strommarkt
- ZIELE: Verbesserte Regelungen im Energiebereich → verursachergerechtere Kostenverteilung + effizientere Nutzung der Infrastruktur
- Flexibilitäten gewinnen an Bedeutung: flexibler Netzzugang, Spitzenkappung statisch/dynamisch, Ansteuerbarkeit der PV-Anlagen etc. → Entschärfung Netzrestriktionen
- Flexible Stromtarife und Netzentgelte → Anreize für systemdienliches Verhalten

Update Bürgerenergie - § 60 bis 68

- Erweiterung Energiegemeinschaften (GEA, EEG, BEG) neu: gemeinsame Energienutzung durch "Peer-To-Peer" Modelle → Vertrag reicht aus (keine Rechtsform nötig)
- Finanzielle Vergünstigungen bei Netzentgelten & Abgaben im Nahbereich
- Gebietskörperschaften mit Erzeugungsanlagen, die an der gemeinsamen Energienutzung teilnehmen, müssen zumindest 10 % der jährlich erzeugten und eingespeisten Strommenge schutzbedürftigen Haushalten zur Verfügung stellen

Für PV-Anlagen relevante Neuerungen durch das EIWG

- Systemnutzungsentgelte: NEU Netznutzungsentgelte auch für Einspeiser (§ 120) und Ausnahmen für systemdienliche Speicher (§ 119)
- Ansteuerbarkeit neuer PV-Anlagen § 70b bzw. 94a
- Spitzenkappung § 94a
- Flexibler bzw. beschränkter Netzzugang § 96 und 97
- Strombezugsverträge und Direktleitungen § 57 und 59

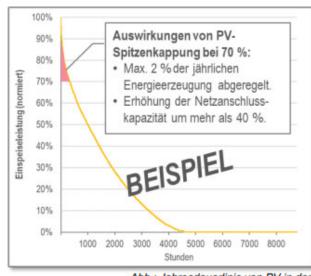


Abb.: Jahresdauerlinie von PV in der APG-Regelzone (Daten: APG, 2023; Analyse und Darstellung: E-Control, 2024)

Systemnutzungsentgelte - § 119 und 120

- Netzbenutzer müssen für die Nutzung des Netzes Systemnutzungsentgelte zahlen, diese werden für Einspeisung bzw. Verbrauch getrennt verrechnet
- Energiespeicheranlagen, die systemdienlich betrieben werden, sind beim Strombezug für die ersten 20 Betriebsjahre vom Netznutzungs- bzw. Netzverlustentgelt befreit (§ 119)
- Netznutzungsentgelt (§ 120): ist von Verbrauchern und Einspeisern pro Zählpunkt zu zahlen,
 Entgelthöhe wird jährlich per Verordnung festgelegt
 - → zeit- bzw. lastvariable Ausgestaltung des Entgelts ist möglich

Ansteuerbarkeit neuer PV-Anlagen - § 70b bzw. 94a

 Betreiber neuer PV-Anlagen ab 7 kW sind ab 1. Juni 2026 verpflichtet, ihre Anlagen mit einer steuerbaren technischen Einrichtung auszustatten (Kosten trägt der Betreiber)

Fristen für Umsetzung der Ansteuerbarkeit durch Netzbetreiber:

Bis 01.06.2028 PV-Anlagen mit netzwirksamer Leistung > 25 kW

Bis 01.06.2029 PV-Anlagen mit netzwirksamer Leistung > 7 kW bis 25 kW

Bis 01.01.2030 PV-Anlagen mit netzwirksamer Leistung > 0,8 kW bis 7 kW auf

Verlangen des Anlagenbetreibers

Spitzenkappung - § 94a

- Statische bzw. dynamische Begrenzung der netzwirksamen Leistung von PV-Anlagen (nicht unter 60 % der Modulspitzenleistung)
- Bei steuerbarer Anlage → Begrenzung dynamisch maximale Ausnutzung der Netzkapazität

Keine Begrenzung:

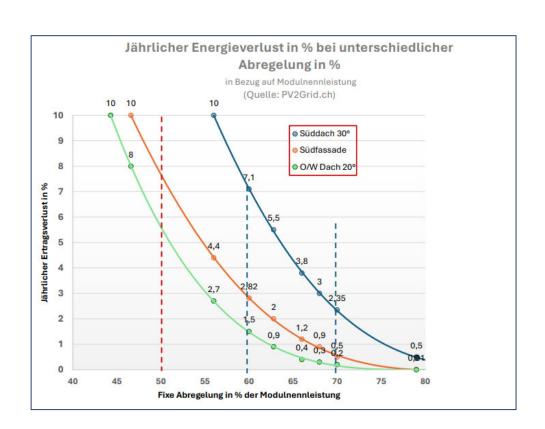
- → Anlagenbetreiber hat Kosten für einen unbeschränkten Anschluss getragen
- → Anlagenbetreiber ist zusätzlich zu öffentlichem Netz an eine Direktleitung angeschlossen
- Bei absehbarer Begrenzung muss der Netzbetreiber den Anlagenbetreiber frühzeitig elektronisch informieren

Flexibler bzw. beschränkter Netzzugang - § 96 und 97

- Bei neuem oder geändertem Netzzugang: bei fehlenden Netzkapazitäten kann maximale netzwirksame Leistung vorübergehend statisch oder dynamisch vorgeben werden
- Begrenzung für 12-24 Monate → solange voller Netzzugang nicht möglich ist
- Übertragungsnetzbetreiber können Netzzugang begrenzen → trägt der Netzbenutzer die Kosten für einen unbeschränkten Anschluss, dürfen keine Begrenzungen erfolgen

Strombezugsverträge und Direktleitungen - § 57 bzw. 59

- Stromerzeuger dürfen direkt mit Endkundinnen und Endkunden Strombezugsverträge (sogenannte "Power Purchase Agreements", kurz PPAs) abschließen
- Erzeuger dürfen selbst sogenannte Direktleitungen errichten und betreiben
- private Leitungen verbinden Stromerzeuger direkt mit Verbrauchern (z.B. PV-Anlage mit Elektrotankstelle)
- → Vorteil: Verringerung von Netzentgelten


EIWG – Auswirkungen auf Wirtschaftlichkeit von PV-Anlagen

Wirtschaftlichkeit von PV-Anlagen

Auswirkungen von Spitzenkappungen

- Auswirkungen auf den Jahresertrag durch fixe Abregelungen auf 50 / 60 / 70 % der Modulspitzenleistung
- Anlage produziert meist nur 20-30 % der Modulspitzenleistung
- Beispiel Süddach: 60 % Leistung →
 7 % Ertragsverlust
- Erhöhung Eigenverbrauch, Einsatz
 Speicher etc. → 1 % Ertragsverlust

Beispiel Zwettl Wirtschaftshof – allgemeine Annahmen

PV-Anlage am Wirtschaftshof	200 kWp
Jahresstromproduktion	207.000 kWh
Verbrauch Wirtschaftshof	10.000 kWh
Stromspeicher	200 kWh
Lastverschiebung inkl. Ladestationen E-Auto	30.000 kWh
Teilnahme an regionaler EEG	50 % Stromverkauf, 2 % Strombezug

Beispiel Zwettl Wirtschaftshof – angenommene Tarife und Gebühren

Einspeisevergütung OeMAG 2024	4,655 bis 8,7 Cent/kWh monats-markt-abhängig
Einspeisevergütung EEG	7 Cent/kWh
Einspeisevergütung nachts	4 Cent/kWh (mit Stromspeicher)
Netzgebühren Einspeisung	2 Cent/kWh
Einspeise- und Netzgebühren	jeweils variabel (Variante 3)
Strombezug vom Netz	25 Cent/kWh
Strombezug aus EEG	13,35 Cent/kWh

Beispiel Zwettl Wirtschaftshof – Übersicht der Varianten und Szenarien

	Variante 1 Ohne Netzgebühren OeMAG Tarif	Variante 2 Mit Netzgebühren OeMAG Tarif	Variante 3 Variable Gebühren Var. Einspeisetarif	
Szenario 1	Autarkiegrad 90 % (PV-Anlage ohne Speicher)			
Szenario 2	Autarkiegrad 95 % (PV-Anlage mit Speicher)			
Szenario 3	Autarkiegrad 98 % (PV-Anlage mit Speicher, Lastverschiebung + E-Auto)			
Szenario 4	Autarkiegrad 98 % (PV-Anlage mit Speicher, Lastverschiebung + E-Auto, EEG)			

Beispiel Zwettl Wirtschaftshof – Ergebnis Einnahmen + Ersparnis

	Ergebnisse				
	Einnahmen + Ersparnis (nnahmen + Ersparnis (fixer Verbraucherpreis/-tarif)			
		Netzgebühren bei über 0 % der maximalen Leistung der PV-Module.			
Varianten:	ohne Netzgebühren	mit Netzgebühren	mit variablen Netzgebühren		
	ÖMAG-Tarif	ÖMAG-Tarif	variabler Einspeise-Tarif		
Szenario 1:	14.150,7	10.190,3	4.775,7	EUR	
Szenario 2:	14.329,8	10.463,2	4.959,7	EUR	
Szenario 3:	20.067,6	16.123,0	12.525,5	EUR	
Szenario 4:	21.721,9	17.777,3	14.788,2	EUR	

Beispiel Zwettl Wirtschaftshof – Ergebnis Ausgaben Reststrombezug

	Ausgaben für Reststrom	bezug		
Varianten:	ohne Netzgebühren mit Netzgebühren m		mit variablen Netzgebühren	
	ÖMAG-Tarif	ÖMAG-Tarif	variabler Einspeise-Tarif	
Szenario 1:	249,5	249,5	249,5	EUR
Szenario 2:	124,7	124,7	124,7	EUR
Szenario 3:	49,9	49,9	49,9	EUR
Szenario 4:	26,7	26,7	26,7	EUR

Beispiel Zwettl Wirtschaftshof – Ergebnis Einnahmen abzüglich Ausgaben

	Ergebnisse			
	Einnahmen abzüglich Au	ısgaben		
Varianten:	ohne Netzgebühren	mit Netzgebühren	mit variablen Netzgebühren	
	ÖMAG-Tarif	ÖMAG-Tarif	variabler Einspeise-Tarif	
Szenario 1:	13.901,2	9.940,9	4.526,2	EUR
Szenario 2:	14.205,0	10.338,5	4.834,9	EUR
Szenario 3:	20.017,7	16.073,1	12.475,6	EUR
Szenario 4:	21.695,2	17.750,6	14.761,4	EUR

Beispiel Zwettl Wirtschaftshof – Conclusio aus den Berechnungen

- Eigenverbrauch erhöhen bringt wirtschaftlich am meisten → gelingt durch bewusste Nutzung des Speichers und Lastverschiebungen (E-Ladestationen) sowie Teilnahme in EEG
- Flexible Tarife und Netzentgelte beanreizen Änderung des Nutzungsverhaltens und Möglichkeiten der Stromvermarktung → z.B. Einspeisevergütung nachts höher als mittags
- Berechnungen werden komplexer → man muss jede Konstellation individuell durchrechnen
 - Beispiel Zwettl ist eine fiktive Darstellung der zukünftigen möglichen Marktveränderungen

Lösungsansätze für PV-Anlagen

Entwicklungen bei PV-Anlagen

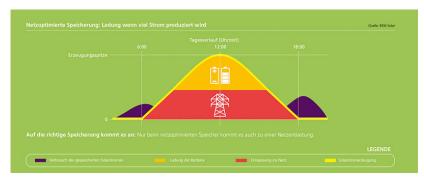
Bei künftigen Anlagenplanungen Berücksichtigung neuer Trends

- Technologischer Fortschritt: laufende Steigerung Wirkungsgrade (auf weniger Fläche mehr Stromerzeugung möglich), Kosten sinken laufend
- Module mit bifacialen Zellen: Mehrwert für PV-Anlagen auf Fassaden, Zäunen, Agri PV etc.
- Ausrichtungen: südseitige Fassaden bzw. steilere Neigungen → mehr Ertrag im Winter, Ost /
 West Ausrichtungen → je nach Nutzung ev. Höherer Direktnutzungsanteil als Südseite
- Erhöhung Eigenverbrauch → geringere Auswirkungen durch dynamische Einspeise- und Bezugstarife bzw. Netzbeschränkungen

Stromspeicher

Ein paar Fakten zu Stromspeichern (Batteriespeicher)

- Funktion: zeitliche Verschiebung Erzeugung und Verbrauch
- Gängige Technologien: Lithium-Ionen-Batterien (insb. LFP),
 künftig vermehrt Natrium-Ionen-Batterien
- Laufende Weiterentwicklungen und Kostensenkungen
- Erhöhung Eigenverbrauch bzw. Autarkiegrad
- Möglichkeit der Notstromversorgung
- Lastspitzen verhindern / kappen (Peak Shaving)


Quelle: https://faveos.com/peak-shaving-mit-stromspeichern-zur-lastspitzenkappung/

Stromspeicher

Intelligente Betriebsweise von Stromspeichern

- EIWG schafft Anreize für systemdienlichen Betrieb durch variable Netz- und Stromtarife
- Immer wichtiger: Vermeidung von Lastspitzen (insb. zu Mittag) im Netz, daher intelligente Steuerung nötig
- Speicherbeladung mit Netzbezug (günstig: mittags, nachts, WE): insb. im Winter sinnvoll wenn nicht genug PV Strom vorhanden ist, bessere Nutzung des Speichers

Strompreise im Tagesverlauf

K

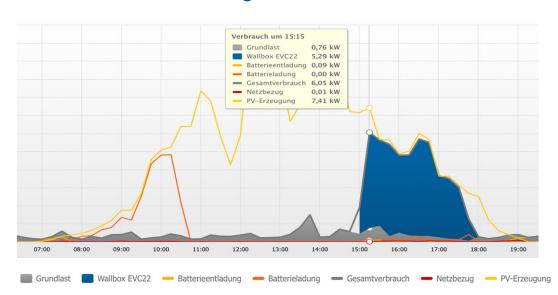
Am Beispiel eines Floating-Tarifanbieters: Energiepreis in CT/kWH inkl. 20% USt. am 25. 9. 2024

Quelle: https://kurier.at/wirtschaft/waschen-mittag-dynamischer-stromtarif-floater-grosshandel-energie-preis-epex-spot-praxis-erfahrungen/402952672

Zukunftsfähige Ladeinfrastruktur

- Kombination E-Ladestationen mit Speichern diverse Anbieter → Standorte z.B. bei Supermärkten, öffentliche Parkplätze
 - → Nutzung dynamischer Tarife sinnvoll
 - → auch mit Notstromversorgung möglich
- Beispiel Ladepark bei SPL TELE Wolkersdorf: Kombination PV-Carportüberdachungen mit E-Ladestationen, Speichern und Energiemanagementsystem

Quelle: https://www.greeninfra.at/product/greemer-232/



Quelle: https://www.spl-tele.com/2191/na-was-gehtab/28287/voller-charme-voller-charge

E-Auto als mobiler Stromspeicher

- E-Auto als "Großverbraucher" mit der Möglichkeit zum netzdienlichen Laden
- Gesteuertes Laden mit PV-Überschuss erhöht Eigenverbrauch & Wirtschaftlichkeit
- Bidirektionales Laden als (nächster) Schritt V2H/V2G (vehicle to home/grid)
- Stromüberschuss tagsüber ins Auto laden, nachts verbrauchen

© Matthias Komarek, eNu

© Matthias Komarek, eNu

Energiemanagementsysteme

Energiemanagementsysteme (EMS) als sinnvolle Ergänzung

- Möglichst automatisierte, benutzerfreundliche Systeme
- Visualisierung von Erzeugung, Verbrauch und Speicherung
- Erhöhung Eigenverbrauch gewinnt an Bedeutung (sinkende PV-Einspeisetarife)
- Intelligente Steuerung von Speichern: prognosebasiertes Lademanagement (Wetterund Verbrauchsdaten), Nutzung flexibler Tarife (plus Netzbezug)
- Nutzung von Flexibilitäten auf Verbrauchsseite (Lastverschiebungen): E-Ladestationen, Wärmepumpen, Klimaanlagen, E-Boiler, etc.
- Preisspanne systemabhängig: grob EUR 300 bis 3.000

Energiegemeinschaften & Co

Möglichkeiten der gemeinsamen Energienutzung

- ZIEL: Gemeinsam Energie produzieren, verkaufen, verbrauchen und speichern
- Vorteile: Bewusstseinsbildung, Netzkostenersparnisse je nach Modell
- NEU: gemeinsame Energienutzung mit neuen Möglichkeiten der Ausgestaltung
- Speichereinbindung in EG → Erhöhung Stromaustausch in EG um über 10%

Preisbestandteil		ohne EEG	lokale EEG	regionale EEG
EEG Reduktion Netzentgelte			57 %	28 %
Netznutzungsentgelt	ct/kWh	8,20	3,53	5,90
Netzverlustentgelt	ct/kWh	0,45	0,45	0,45
Elektrizitätsabgabe	ct/kWh	1,50	0,00	0,00
Erneuerbaren Förderbeitrag	ct/kWh	0,80	0,00	0,00
Umsatzsteuer (20%)	ct/kWh	2,19	0,80	1,27
Summe	ct/kWh	13,14	4,77	7,63
Einsparung Gebühren	ct/kWh	0,00	8,37	5,52

Quelle: https://www.energieinstitut.at/tools/benefit/

Aktuelle Förderungen

EAG Investitionszuschuss PV-Anlagen + Speicher

- Einmaliger Zuschuss bei Errichtung PV-Anlage bis 1 MWp (plus Speicher mit max. nutzbarer Speicherkapazität von 50 kWh und mind. Verhältnis 0,5 kWh/kWp)
- Stromspeicher: 150 EUR/kWh
- Nächster Fördercall 2025: 08.10.2025 um 17:00 22.10.2025 um 23:59 Uhr
- Zusatzförderung: "Made-in-Europe–Bonus" für PV-Module, Wechselrichter und Stromspeicher (siehe Pkt. 37 FAQ)
- Weitere Details: <u>FAQs</u> bzw. <u>Leitfäden für die IVZ-Antragstellung Photovoltaik</u>
- Ubersicht über sonstige aktuelle Förderungen: SonnenKlar Förderkompass

Kann man Großanlagen auch künftig noch wirtschaftlich betreiben?

Conclusio und Empfehlungen

Zukunft der PV-Anlagen

Vorteile des Ausbaus von PV-Anlagen für Städte

- PV-Anlagen durch sinkende Preise weiterhin wirtschaftlich → Ausbau sinnvoll und für Dekarbonisierung + Elektrifizierung notwendig
- Anpassung Einspeise- und Verbrauchsverhalten an künftige Entwicklungen –
 Mittagsspitzen durch Speicher und EMS vermeiden, Schaffung von Flexibilitäten
- Durch Ausbau Erneuerbarer Beitrag zu langfristig stabilen + sinkenden Strompreisen
- Förderung von bzw. Teilnahme an gemeinsamer Energienutzung bzw.
 Energiegemeinschaften (lokale Erzeugung/Verbrauch)

Kontaktdaten

Mag. Britta Ehrenberg NÖ Energie- und Umweltagentur Grenzgasse 10, 3100 St. Pölten

<u>britta.ehrenberg@enu.at</u> +43 676 836 88 376